Excited-State Absorption of Conjugated Polymers in the Near-Infrared and Visible: A Computational Study of Oligofluorenes
详细信息    查看全文
文摘
Excited-state properties of conjugated polymers play a central role in applications ranging from organics-based photovoltaics to nonlinear photonics. From a theoretical and computational point of view, however, an accurate first-principles description poses a formidable task. Typical molecule sizes go well beyond the size limits for which highly reliable wave function based electronic-structure methods can be applied. In the present work, we demonstrate that nonlinear-response density functional theory can be used to accurately model the excited state absorption process in an important class of conjugated materials. We compute transitions between up to 100 excited states for fluorene oligomers containing up to about 100 conjugated atoms. Furthermore, we demonstrate that this approach can explain the nature of absorption bands in the ESA in near-infrared and visible spectral range. These systems are large enough that we approach the polymer limit in terms of electronic properties of excited states. The results obtained are in good agreement with available experimental data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700