Coarsening of Two-Dimensional Nanoclusters on Metal Surfaces
详细信息    查看全文
文摘
We describe experimental observations and theoretical analysis of the coarsening of distributions of two-dimensional nanoclusters, either adatom islands or vacancy pits, on metal surfaces. A detailed analyses is provided for Ag(111) and Ag(100) surfaces, although we also discuss corresponding behavior for Cu(111) and Cu(100) surfaces. The dominant kinetic pathway for coarsening can be either Ostwald ripening (OR), i.e., growth of larger clusters at the expense of smaller ones, or Smoluchowski ripening (SR), i.e., diffusion and coalescence of clusters. First, for pristine additive-free surfaces, we elucidate the factors which control the dominant pathway. OR kinetics generally follows the predictions of mesoscale continuum theories. SR kinetics is controlled by the size-dependence of cluster diffusion. However, this size-dependence, together with that of nanostructure shape relaxation upon coalescence, often deviates from mesoscale predictions as a direct consequence of the nanoscale dimension of the clusters. Second, we describe examples for the above systems where trace amounts of a chemical additive lead to dramatic enhancement of coarsening. We focus on the scenario where “facile reaction” of metal and additive atoms leads to the formation of mobile additive-metal complexes which can efficiently transport metal across the surface, i.e., additive-enhanced OR. A suitable reaction-diffusion equation formulation is developed to describe this behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700