Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology
详细信息    查看全文
文摘
Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor–polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I/I = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700