Contribution of Aggregate States and Energetic Disorder to a Squaraine System Targeted for Organic Photovoltaic Devices
详细信息    查看全文
文摘
Squaraine dyes have significant potential for use in organic photovoltaic devices because their chemical and packing structure tunability leads to a broad solid state panchromaticity. Nevertheless, broadening of the spectrum does not always give rise to increasing power conversion efficiencies. Furthermore, the same processing strategy used to make devices from different squaraines does not lead to the same optimized performance. In this work, by varying the environmental conditions of a set of anilinic squaraines, we demonstrate that spin-cast thin films are made up of a complex set of states, with each state contributing differently to the overall device efficiency. We demonstrate crystallochromy in that small changes in the packing structure give rise to dramatically different absorption spectra. Through a remarkable comparison between squaraines in poly(methyl methacrylate) solid solution and squaraine:PC60BM blends, we also show long-range and orientational disorder broadening, which distorts the ability to correlate qualitative spectroscopic assessment with an understanding of the device mechanism. We conclude that a full quantitative assessment of the populations of each excited state must be carried out in order to make progress toward an improved understanding of each state鈥檚 contribution to charge transfer at the bulk heterojunction interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700