Water in Carbon Nanotubes: The Peculiar Hydrogen Bond Network Revealed by Infrared Spectroscopy
详细信息    查看全文
文摘
A groundbreaking discovery in nanofluidics was the observation of the tremendously enhanced water permeability of carbon nanotubes, those iconic objects of nanosciences. The origin of this phenomenon is still a subject of controversy. One of the proposed explanations involves dramatic modifications of the H-bond network of nanoconfined water with respect to that of bulk water. Infrared spectroscopy is an ideal technique to follow modifications of this network through the inter- and intramolecular bonds of water molecules. Here we report the first infrared study of water uptake at controlled vapor pressure in single walled carbon nanotubes with diameters ranging from 0.7 to 2.1 nm. It reveals a predominant contribution of loose H bonds even for fully hydrated states, irrespective of the nanotube size. Our results show that, while the dominating loosely bond signature is attributed to a one-dimensional chain structure for small diameter nanotubes, this feature also results from a water layer with “free” OH (dangling) bonds facing the nanotube wall for larger diameter nanotubes. These experimental findings provide a solid reference for further modeling of water behavior in hydrophobic nanochannels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700