Different QM/MM Approaches To Elucidate Enzymatic Reactions: Case Study on ppGalNAcT2
详细信息    查看全文
文摘
Hybrid QM/MM computational studies can provide invaluable insight into the mechanisms of enzymatic reactions that can be exploited for rational drug design. Various approaches are available for such studies. However, their strengths and weaknesses may not be immediately apparent. Using the retaining glycosyltransferase ppGalNAcT2 as a case study, we compare different methodologies used to obtain reaction paths and transition state information. Ab Initio MD using CPMD coupled with the String Method is used to derive the minimum free energy reaction path. The geometrical features of the free energy path, especially around the transition state, agree with the minimum potential energy path obtained by the much less computationally expensive Nudged Elastic Band method. The barrier energy, however, differs by 8 kcal/mol. The free energy surface generated by metadynamics provides a rough overview of the reaction and can confirm the physical relevance of optimized paths or provide an initial guess for path optimization methods. Calculations of enzymatic reactions are usually performed at best at the DFT level of theory. A comparison of widely used functionals with high-level DLPNO-CCSD(T)/CBS data on the potential energy profile serves as a validation of the usability of DFT for this type of enzymatic reaction. The M06-2X meta-hybrid functional in particular matches the DLPNO-CCSD(T)/CBS reference extremely well with errors within 1 kcal/mol. However, even pure-GGA functional OPBE provides sufficient accuracy for this type of study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700