Tunable Photothermal Actuators Based on a Pre-programmed Aligned Nanostructure
详细信息    查看全文
文摘
For various applications, it is challenging but essential to obtain complex tunable mechanical actuations in response to environmental stimuli. Here, a general and effective strategy is developed to produce multiple types of photomechanical actuation (from phototropic/apheliotropic bending to three-dimensional helical buckling) by manipulating the orientation of one-dimensional nanomaterials. These materials are manipulated to mimic plants that generate diverse mechanical motions through the orientation of cellulose fibrils. The photomechanical actuations can be completed in milliseconds and can be performed reversibly without detectable fatigue after 100?000 cycles. This capacity to produce multiple types of photomechanical actuation is further developed to produce complex integrated movements, as demonstrated by a light-manipulated robotic arm and a solar energy harvesting system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700