Isobaric Vapor鈥揕iquid Equilibrium for the Binary System (Ethane-1,2-diol + Butan-1,2-diol) at (20, 30, and 40) kPa
详细信息    查看全文
文摘
The isobaric vapor鈥搇iquid equilibrium (VLE) data were measured for the binary system (ethane-1,2-diol + butan-1,2-diol) at (20, 30, and 40) kPa using a modified dynamic recirculating still. The thermodynamic consistency of the experimental data was confirmed using the Herington and van Ness semiempirical method. The Wilson and universal quasichemical (UNIQUAC) models were used to correlate the activity coefficients with the liquid-phase composition. The average absolute deviation of the bubble-point temperature and vapor molar fraction for all of the systems obtained from the Wilson and UNIQUAC models are less than 0.18 K and 0.0011, respectively. Furthermore, the binary system (ethane-1,2-diol + butan-1,2-diol) exhibited azeotropic behavior. In addition, the data were calculated using the UNIFAC (Do) model (modified UNIFAC model) in which ethane-1,2-diol was treated as two groups (鈭扖H2OH), and butan-1,2-diol was split to four groups (鈭扖H2OH, 鈭扖HOH, 鈭扖H2, and 鈭扖H3). The new group-interaction parameter for CH2鈥揅H2OH was obtained and used to estimate the VLE data for the binary system (butan-2-ol + butan-1-ol) at 101.3 kPa. The results are consistent with those of the literature data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700