Thickness, Composition, and Molecular Structure of Residual Thin Films Formed by Forced Dewetting of Ag from Glycerol/D2O Solutions
详细信息    查看全文
文摘
The thickness, composition, and interfacial molecular structure of residual thin films retained on the surface of polycrystalline Ag substrates after being forcibly dewet from glycerol/D2O solutions are investigated using contact angle measurements, ellipsometry, and polarization modulation-infrared reflection鈥揳bsorption spectroscopy (PM-IRRAS). Residual film thicknesses are rationalized on the basis of the relevant long-range van der Waals and structural forces leading to residual film formation along with the interfacial glycerol and D2O structure. Unique interfacial composition, wherein glycerol preferentially segregates to the residual film interfaces, is substantiated by PM-IRRAS. Thus, the residual films possess composition and molecular structure that differ from those of bulk solution. Specifically, in the thinnest residual films, glycerol interacts strongly with the Ag substrate, leading to glycerol that is more ordered than the bulk liquid that coexists with bulk-like D2O. In thicker residual films, the glycerol mole fraction is still enhanced relative to the bulk solution, but both ordered and liquid-like glycerol species are observed along with D2O that is more strongly hydrogen-bonded than in the bulk. The creation of residual films by forced dewetting and their interrogation by spectroscopic methods are thus demonstrated to represent a powerful approach for characterizing interfacial liquid molecular structure near solid surfaces but beyond the first monolayer under ambient conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700