Carbon Nanotube Photo- and Electroluminescence in Longitudinal Electric Fields
详细信息    查看全文
文摘
The photoluminescence of a partially suspended, semiconducting carbon nanotube that forms the active channel of a field-effect transistor is quenched and red-shifted upon application of a longitudinal electrical (source−drain) field. The quenching can be explained by a loss of oscillator strength and an increased Auger-like nonradiative decay of the E11 exciton. The spectral shifts are due to drain-field-induced doping that leads to enhanced dielectric screening. Electroluminescence due to electron impact excitation of E11 excitons is red-shifted and broadened with respect to the zero-field photoluminescence. A combination of screening and heating of the carbon nanotube can explain both spectral shift and broadening of the electrically induced light emission.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700