Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals
详细信息    查看全文
文摘
Machine learning algorithms were explored for the fast estimation of HOMO and LUMO orbital energies calculated by DFT B3LYP, on the basis of molecular descriptors exclusively based on connectivity. The whole project involved the retrieval and generation of molecular structures, quantum chemical calculations for a database with >111 000 structures, development of new molecular descriptors, and training/validation of machine learning models. Several machine learning algorithms were screened, and an applicability domain was defined based on Euclidean distances to the training set. Random forest models predicted an external test set of 9989 compounds achieving mean absolute error (MAE) up to 0.15 and 0.16 eV for the HOMO and LUMO orbitals, respectively. The impact of the quantum chemical calculation protocol was assessed with a subset of compounds. Inclusion of the orbital energy calculated by PM7 as an additional descriptor significantly improved the quality of estimations (reducing the MAE in >30%).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700