Thorium and Uranium Carbide Cluster Cations in the Gas Phase: Similarities and Differences between Thorium and Uranium
详细信息    查看全文
文摘
Laser ionization of AnC4 alloys (An = Th, U) yielded gas-phase molecular thorium and uranium carbide cluster cations of composition AnmCn+, with m = 1, n = 2鈥?4, and m = 2, n = 3鈥?8, as detected by Fourier transform ion-cyclotron-resonance mass spectrometry. In the case of thorium, ThmCn+ cluster ions with m = 3鈥?3 and n = 5鈥?0 were also produced, with an intriguing high intensity of Th13Cn+ cations. The AnC13+ ions also exhibited an unexpectedly high abundance, in contrast to the gradual decrease in the intensity of other AnCn+ ions with increasing values of n. High abundances of AnC2+ and AnC4+ ions are consistent with enhanced stability due to strong metal鈥揅2 bonds. Among the most abundant bimetallic ions was Th2C3+ for thorium; in contrast, U2C4+ was the most intense bimetallic for uranium, with essentially no U2C3+ appearing. Density functional theory computations were performed to illuminate this distinction between thorium and uranium. The computational results revealed structural and energetic disparities for the An2C3+ and An2C4+ cluster ions, which elucidate the observed differing abundances of the bimetallic carbide ions. Particularly noteworthy is that the Th atoms are essentially equivalent in Th2C3+, whereas there is a large asymmetry between the U atoms in U2C3+.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700