Atom Probe Tomography Analysis of Boron and/or Phosphorus Distribution in Doped Silicon Nanocrystals
详细信息    查看全文
文摘
Silicon nanocrystals (Si NCs) are intensively studied for optoelectronic and biological applications due to having highly attractive features such as band engineering. Although doping is often used to control the optical and electrical properties, the related structural properties of solely doped and codoped Si NCs are not well-understood. In this study, we report the boron (B) and/or phosphorus (P) distribution in Si NCs embedded in borosilicate glass (BSG), phosphosilicate glass (PSG), and borophosphosilicate glass (BPSG) using atom probe tomography (APT). We compared solely and codoped Si NCs grown at different temperatures so that we may compare the effects of codoping and temperature on the B and/or P distribution. Proximity histograms and cluster analyses reveal that there exist boron-rich layers surrounding Si NCs and also B–P clusters within the Si NCs. Raman spectra also show a structural change between codoped Si NCs in solids and free-standing codoped Si NCs. These results lead us to understand that codoped Si NCs disperse in polar solvents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700