Spectroscopic and MD Study of Dynamic and Structural Heterogeneities in Ionic Liquids
详细信息    查看全文
  • 作者:Eric C. Wu ; Hyung J. Kim ; Linda A. Peteanu
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2017
  • 出版时间:February 9, 2017
  • 年:2017
  • 卷:121
  • 期:5
  • 页码:1100-1107
  • 全文大小:603K
  • ISSN:1520-5207
文摘
The structure of ionic liquids (ILs) surrounding solute dyes and the effects of solvent structure on solute diffusion have been investigated using molecular dynamics (MD) and the experimental tools of confocal and fluorescence correlation spectroscopies. Although confocal microscopy and simulations show that the local environment around solutes in ILs is heterogeneous and that the structural heterogeneity is rather long-lived, the local polarity and the diffusion constant were found to be uncorrelated. Moreover, the complex diffusion observed experimentally is not due to the structural heterogeneity of the IL but rather due to the dynamic heterogeneity arising from the viscous glassy nature of the IL environment. MD simulations show that the degree of dynamic heterogeneity depends on the first nonvanishing electric multipole moment of the solute. The dynamics of a cationic solute are the least heterogeneous, whereas those of a solute without an electric multipole moment are the most heterogeneous. This indicates that the length scale over which the solute–solvent interactions occur, and thus the number of solvent degrees of freedom that couple to the solute, are the key factors governing the dynamic heterogeneity of the solute.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700