Oxidation of Antibacterial Compounds by Ozone and Hydroxyl Radical: Elimination of Biological Activity during Aqueous Ozonation Processes
详细信息    查看全文
文摘
A wide variety of antibacterial compounds is rapidly oxidized by O3 and hydroxyl radical (OH) during aqueous ozonation. Quantitative microbiological assays have been developed here or adapted from existing methods and utilized to measure the resulting changes in antibacterial potencies during O3 and OH treatment of 13 antibacterial molecules (roxithromycin, azithromycin, tylosin, ciprofloxacin, enrofloxacin, penicillin G, cephalexin, sulfamethoxazole, trimethoprim, lincomycin, tetracycline, vancomycin, and amikacin) from 9 structural classes (macrolides, fluoroquinolones, β-lactams, sulfonamides, dihydrofolate reductase inhibitors, lincosamides, tetracyclines, glycopeptides, and aminoglycosides), as well as the biocide triclosan. Potency measurements were determined from dose−response relationships obtained by exposing genus-species" type="simple">Escherichia coli or genus-species" type="simple">Bacillus subtilis reference strains to treated samples of each antibacterial compound via broth micro- or macrodilution assays and related to the measured residual concentrations of parent antibacterial in each sample. Data obtained from these experiments show that O3 and OH reactions lead in nearly all cases to stoichiometric elimination of antibacterial activity (i.e., loss of 1 mole equivalent of potency per mole of parent compound consumed). The β-lactams penicillin G (PG) and cephalexin (CP) represent the only clear exceptions, as bioassay measurements indicate that biologically active products may be formed in the reactions of these two compounds with both O3 and OH. The active product(s) generated in the direct reaction of O3 with PG appear(s) to be recalcitrant to further transformation by O3, though any biologically active products formed in the reactions of CP with O3, or of either PG or CP with OH, are apparently deactivated by further reactions with O3 or OH, respectively. Thus, with few exceptions, it can be expected that municipal wastewater ozonation will generally yield sufficient structural modification of antibacterial molecules to eliminate their antibacterial activities, whether oxidation results from selective reactions with O3 or from relatively nonselective reactions with incidentally produced OH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700