Structure鈥揚roperties Correlation in Si Nanoparticles by Total Scattering and Computer Simulations
详细信息    查看全文
文摘
High-energy synchrotron X-ray diffraction coupled to atomic pair distribution function analysis and computer simulations is used to determine the atomic-scale structure of silicon (Si) nanoparticles obtained by two different synthetic routes. Results show that Si nanoparticles may have significant structural differences depending on the synthesis route and surface chemistry. In this case, one method produced Si nanoparticles that are highly crystalline but surface oxidized, whereas a different method yields organic ligand-passivated nanoparticles without surface oxide but that are structurally distorted at the atomic scale. Particular structural features of the oxide-free Si nanoparticles such as average first coordination numbers, length of structural coherence, and degree of local distortions are compared to their optical properties such as photoluminescence emission energy, quantum yield, and Raman spectra. A clear structure鈥損roperties correlation is observed indicating that the former may need to be taken into account when considering the latter.

Keywords:

Si nanoparticles; synchrotron X-ray diffraction; atomic PDFs analysis; nanoparticle structure modeling; optical properties鈭抧anostructure correlation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700