Monodispersity/Narrow Polydispersity Cross-Linked Microparticles Prepared by Step-Growth Thiol鈥揗ichael Addition Dispersion Polymerizations
详细信息    查看全文
文摘
We report a dispersion polymerization method based on thiol鈥揗ichael addition reactions for the preparation of cross-linked, narrow dispersity microparticles with well-defined, tunable physicochemical properties. Polymerization between pentaerythritol tetra(3-mercaptopropionate) (PETMP) and trimethylolpropane triacrylate in methanol was chosen as a model system, with the addition of triethylamine as a catalyst and polyvinylpyrrolidone as a stabilizer. The formation of microparticles took place within seconds at ambient conditions, as a result of a polymerization driven phase transition from dissolved monomers to precipitated polymers. The particle size was found to be affected by the amount of catalyst, the monomer concentration, and the monomer/polymer solubility in the reaction media. Monodispersity was achieved within a range of particle diameters from 1.6 to 4.3 渭m, as determined both by scanning electron microscopy and dynamic light scattering. The reaction kinetics were studied by Fourier transform infrared spectroscopy by analyzing aliquots withdrawn from the reaction system at various reaction time points. Nearly quantitative conversions were achieved within 6 h for stoichiometric systems and 1 h for off-stoichiometric systems, both initiated with triethylamine. By utilizing photolabile bases as the reaction catalyst, phototriggered formation of the microparticles was demonstrated with ultraviolet irradiation. Monodisperse particles were formed with hexylamine and 1,1,3,3-tetramethylguanidine, both with 2-(2-nitrophenyl)propyloxycarbonyl as the UV-labile photocage. Furthermore, as a demonstration of the versatility of this method, microparticles were prepared from copolymerizations between PETMP and four types of diacrylates with varied backbone structures. With increased backbone rigidity, the microparticle glass transition temperature increased from 鈭?6 to 8 掳C. This method provides a platform for the realization of the nearly ideal step-growth networks in microscale, with highly tunable backbone structures, robust thermal transitions, and intrinsic functionalization capacity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700