Structure and Dynamics of the 1-Hydroxyethyl-4-amino-1,2,4-triazolium Nitrate High-Energy Ionic Liquid System
详细信息    查看全文
文摘
An investigation of the structure and dynamics of the high-energy ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN), was undertaken. Both experimental and computational methods were employed to understand the fundamental properties, characteristics, and behavior of HEATN. The charge separation, according to the electrostatic potential derived charges, was assessed. The MP2 (second-order perturbation theory) geometry optimizations find six dimer and five tetramer structures and allow one to see the significant highly hydrogen bonded network predicted within the HEATN system. Due to the prohibitive scaling of ab initio methods, the fragment molecular orbital (FMO) method was employed and assessed for feasibility with highly energetic ionic liquids using HEATN as a model system. The FMO method was found to adequately treat the HEATN ionic liquid system as evidenced by the small relative error obtained. The experimental studies involved the investigation of the solvation dynamics of the HEATN system via the coumarin 153 (C153) probe at five different temperatures. The rotational dynamics through the HEATN liquid were also measured using C153. Comparisons with previously studied imidazolium and phosphonium ionic liquids show surprising similarity. To the authors鈥?knowledge, this is the first experimental study of solvation dynamics in a triazolium-based ionic liquid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700