Chronopotentiometric Response of an Electrically Heterogeneous Permselective Surface: 3D Modeling of Transition Time and Experiment
详细信息    查看全文
文摘
Understanding of the current density distribution over an electrically heterogeneous surface and its effect on ion transport represents an important issue in electrochemistry, composite materials, geophysics, and some other domains. We report an approach for three-dimensional (3D) modeling (with cylindrical symmetry) of transient ion transfer across a surface composed of conductive and nonconductive areas. In the model formulation and solution we use the electrical current stream function. It allows setting the integral boundary condition for electric current at a heterogeneous surface without any restrictions on the local current density distribution. A very good agreement is found between the numerical solution and the experimental transition time determined from chronopotentiograms. The use of a specially designed membrane allows computation without fitted parameters. We show that the application of specific simplifications for the current density distribution over the surface (uniform distribution throughout all the surface or its conductive area, neglect of tangential current density) results in essential deviations from experimental transition time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700