Structural Rearrangements at Physiological pH: Nuclear Magnetic Resonance Insights from the V210I Human Prion Protein Mutant
详细信息    查看全文
文摘
A major focus in prion structural biology studies is unraveling the molecular mechanism leading to the structural conversion of PrPC to its pathological form, PrPSc. In our recent studies, we attempted to understand the early events of the conformational changes leading to PrPSc using as investigative tools point mutations clustered in the open reading frame of the human PrP gene and linked to genetic forms of human prion diseases. In the work presented here, we investigate the effect of pH on the nuclear magnetic resonance (NMR) structure of recombinant human PrP (HuPrP) carrying the pathological V210I mutation responsible for familial Creutzfeldt-Jakob disease. The NMR structure of HuPrP(V210I) determined at pH 7.2 shows the same overall fold as the previously determined structure of HuPrP(V210I) at pH 5.5. It consists of a disordered N-terminal tail (residues 90鈥?24) and a globular C-terminal domain (residues 125鈥?31) comprising three 伪-helices and a short antiparallel 尾-sheet. Detailed comparison of three-dimensional structures of HuPrP(V210I) at pH 7.2 and 5.5 revealed significant local structural differences, with the most prominent pH-related structural variations clustered in the 伪2鈥撐?sub>3 interhelical region, at the interface of the 尾1鈥撐?sub>1 loop, in helices 伪1 and 伪3, and in the 尾2鈥撐?sub>2 loop region. The detailed analysis of interactions among secondary structure elements suggests a higher degree of structural ordering of HuPrP(V210I) under neutral-pH conditions, thus implying that spontaneous misfolding of PrPC may occur under acidic-pH conditions in endosomal compartments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700