Population Based Reweighting of Scaled Molecular Dynamics
详细信息    查看全文
文摘
Molecular dynamics simulation using enhanced sampling methods is one of the powerful computational tools used to explore protein conformations and free energy landscapes. Enhanced sampling methods often employ either an increase in temperature or a flattening of the potential energy surface to rapidly sample phase space, and a corresponding reweighting algorithm is used to recover the Boltzmann statistics. However, potential energies of complex biomolecules usually involve large fluctuations on a magnitude of hundreds of kcal/mol despite minimal structural changes during simulation. This leads to noisy reweighting statistics and complicates the obtainment of accurate final results. To overcome this common issue in enhanced conformational sampling, we propose a scaled molecular dynamics method, which modifies the biomolecular potential energy surface and employs a reweighting scheme based on configurational populations. Statistical mechanical theory is applied to derive the reweighting formula, and the canonical ensemble of simulated structures is recovered accordingly. Test simulations on alanine dipeptide and the fast folding polypeptide Chignolin exhibit sufficiently enhanced conformational sampling and accurate recovery of free energy surfaces and thermodynamic properties. The results are comparable to long conventional molecular dynamics simulations and exhibit better recovery of canonical statistics over methods which employ a potential energy term in reweighting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700