High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond
详细信息    查看全文
文摘
Measuring local temperature with a spatial resolution on the order of a few nanometers has a wide range of applications in the semiconductor industry and in material and life sciences. For example, probing temperature on the nanoscale with high precision can potentially be used to detect small, local temperature changes like those caused by chemical reactions or biochemical processes. However, precise nanoscale temperature measurements have not been realized so far owing to the lack of adequate probes. Here we experimentally demonstrate a novel nanoscale temperature sensing technique based on optically detected electron spin resonance in single atomic defects in diamonds. These diamond sensor sizes range from a micrometer down to a few tens of nanometers. We achieve a temperature noise floor of 5 mK/Hz1/2 for single defects in bulk sensors. Using doped nanodiamonds as sensors the temperature noise floor is 130 mK/Hz1/2 and accuracies down to 1 mK for nanocrystal sizes and therefore length scales of a few tens of nanometers. This combination of precision and position resolution, combined with the outstanding sensor photostability, should allow the measurement of the heat produced by chemical interactions involving a few or single molecules even in heterogeneous environments like cells.

Keywords:

Nanoscale; temperature measurement; diamond; spin defect; NV center

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700