Complexation of Mn2+, Fe2+, Y3+, La3+, Pb2+, and UO22+ with Organic Ligands: QSPR Ensemble Modeling of Stability Constants
详细信息    查看全文
文摘
Quantitative structure鈥損roperty relationship (QSPR) modeling of the stability constant logK of the 1:1 (M:L) complexes of 6 transition-metal cations (M) with 261 (Mn2+), 87 (Fe2+), 105 (Y3+), 186 (La3+), 226 (Pb2+), and 66 (UO22+) organic ligands (L) in aqueous solutions at 298 K and an ionic strength 0.1 M was performed using ensemble multiple linear regression analysis and substructural molecular fragments as descriptors. The models have been validated in external 5-fold cross-validations procedure and on new ligands recently reported in the literature. Predicted logK values were calculated by consensus models as arithmetic means of 315 (Mn2+), 119 (Fe2+), 260 (Y3+), 290 (La3+), 304 (Pb2+), and 249 (UO22+) individual models. Absolute prediction error of logK is below 1.0 for 75% (UO22+), 70% (Mn2+, Fe2+, La3+), 65% (Pb2+), and 60% (Y3+) of the ligands and comparable with the systematic errors in experimental data. The developed QSPR models were used to screen selective ligands for the studied cations. The obtained models are incorporated in the COMET predictor available at predictor.cgi" class="extLink">http://infochim.u-strasbg.fr/cgi-bin/predictor.cgi.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700