Interfacial Microstructure and Enhanced Mechanical Properties of Carbon Fiber Composites Caused by Growing Generation 1–4 Dendritic Poly(amidoamine) on a Fiber Surface
详细信息    查看全文
文摘
In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700