Dual-Triggered and Thermally Reconfigurable Shape Memory Graphene-Vitrimer Composites
详细信息    查看全文
  • 作者:Zenghui Yang ; Qihua Wang ; Tingmei Wang
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:August 24, 2016
  • 年:2016
  • 卷:8
  • 期:33
  • 页码:21691-21699
  • 全文大小:652K
  • 年卷期:0
  • ISSN:1944-8252
文摘
Conventional thermoset shape memory polymers can maintain a stable permanent shape, but the intrinsically chemical cross-linking leads to shape that cannot be altered. In this paper, we prepared shape memory graphene-vitrimer composites whose shape can be randomly changed via dynamic covalent transesterification reaction. Consecutive shape memory cycles indicate stable shape memory with undetected strain shift and constant shape fixity and recovery values (Rf > 99%, Rr > 98%). Quantitative characterization of shape reconfiguration by dynamic mechanical thermal analysis (DMA) shows prime reconfigurable behavior with shape retention ratio of 100%. Thus, the arbitrary 2D or 3D newly permanent shape can be easily obtained from a simple plain sample by facile thermal treatment at 200 °C above transesterification temperature (Tv). Besides, it is found that graphene-vitrimers show a ductile fracture in tensile test with a large breaking strain and classical yield phenomenon because of the well-dispersed graphene sheets in the vitrimer that endow effective stress transfer. As the graphene loading increases from 0% to 1%, the yield strength and breaking stain increase from 12.0 MPa and 6% to 22.9 MPa and 44%, respectively. In addition, graphene also serves as energy convertor to convert near-infrared (NIR) irradiation into thermal energy to induce a helix shape sample that is recovered totally within 80 s sequent NIR irradiation. These dual-triggered and reconfigurable shape memory graphene-vitrimers are expected to significantly simplify processing of complex shape and broaden the applications of shape memory polymers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700