Air Stable PbSe Colloidal Quantum Dot Heterojunction Solar Cells: Ligand-Dependent Exciton Dissociation, Recombination, Photovoltaic Property, and Stability
详细信息    查看全文
文摘
We fabricated the long-term air stable PbSe colloidal quantum dots (CQDs) based planar heterojunction solar cells (FTO/TiO2/PbSe/Au) with relatively larger active area (0.25 cm2) using tetrabutylammonium iodide (TBAI, I) as ligand in solid state ligand-exchange process. For the first time, we have achieved the whole preparation process of the device in the ambient atmosphere from PbSe CQDs collection to PbSe colloidal quantum dot solar cells (CQDSCs) fabrication, then storage and in their following measurements. Especially, TBAI-treated PbSe CQDSCs exhibited a power conversion efficiency (PCE) of 3.53% under AM 1.5 G in air, and also a remarkable long-term stability (more than 90 days) of their storage in ambient atmosphere has been identified. By contrast, 1,2-ethanedithiol (EDT), 3-mercaptopropionic acid (MPA) and cetyltrimethylammonium bromide (CTAB, Br) treated PbSe CQDSCs were further studied. The ligand-dependent exciton dissociation, recombination, energy level shift, and air stability of PbSe CQDs treated with these different ligands were systematically investigated. It was noted that TBAI-treated PbSe CQDSCs exhibited suppressed recombination, faster charge transfer rate, and longer carrier lifetimes, which resulted in a higher PCE and long-term air stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700