Synergetic Light-Harvesting and Near-Field Enhancement in Multiscale Patterned Gold Substrates
详细信息    查看全文
文摘
Sphere-segment void (SSV) cavities have emerged as promising substrates for reproducible Surface Enhanced Raman Scattering (SERS), offering strong and uniform electromagnetic enhancement associated with the excitation of cavity-like localized surface plasmon resonances tunable across the UV鈥搗is-near IR range, with a facile large-scale fabrication process. High-resolution electron micrographs of these structures reveal a considerable departure from the idealized smooth spherical cavity shape; notably, the electrochemical deposition of gold yields an important surface roughness. We investigate this contribution to the SERS activity of SSV substrates with a series of experiments, varying the degree of surface roughness using thermal annealing and gradual electrochemical roughening. Notably, we observe that both roughness features and cavity-like modes operate in conjunction as a multiscale antenna to provide larger SERS efficiency than the two mechanisms considered separately. We conclude that the main role of the ordered cavity structure is to increase the plasmonic mode density near rough surface features, thus, optimizing the coupling of far-field radiation (light harvesting) to locally enhanced near fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700