In Situ Monitoring of Antisolvent Cocrystallization by Combining Near-Infrared and Raman Spectroscopies
详细信息    查看全文
文摘
In situ monitoring techniques are essential for the control and optimization of the cocrystallization process. In our previous study, we successfully monitored indomethacin鈥搒accharin (IMC鈥揝AC) cocrystallization by antisolvent addition using a method based on near-infrared principal component analysis (NIR鈥揚CA). In this study, a calibration model was developed to predict the solute concentration of the two components. Several samples withdrawn from five sets of experiments were used to develop the calibration model. The actual concentrations of the two components were determined using UV鈥搗is spectroscopy and high performance liquid chromatography (HPLC). The amount of solid-phase material in suspension was calculated from these solute concentration data. Correlations between NIR spectra and solid concentrations were evaluated using partial least-squares (PLS) regression analyses. Reasonably good calibration models with determination coefficients (R2) higher than 0.979 were obtained. Process monitoring was performed using in situ NIR and Raman spectroscopies to predict the concentrations of both IMC and SAC in solution and to identify the solid-phase materials, respectively. The calibration models were deemed suitable, with reasonable accuracy and precision, for in situ concentration monitoring of the antisolvent crystallization of IMC鈥揝AC cocrystals. This combination of NIR and Raman spectroscopies was able to detect the formation and phase transition of the resulting cocrystal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700