Electronic Properties of High-Quality Epitaxial Topological Dirac Semimetal Thin Films
详细信息    查看全文
文摘
Topological Dirac semimetals (TDS) are three-dimensional analogues of graphene, with linear electronic dispersions in three dimensions. Nanoscale confinement of TDSs in thin films is a necessary step toward observing the conventional-to-topological quantum phase transition (QPT) with increasing film thickness, gated devices for electric-field control of topological states, and devices with surface-state-dominated transport phenomena. Thin films can also be interfaced with superconductors (realizing a host for Majorana Fermions) or ferromagnets (realizing Weyl Fermions or T-broken topological states). Here we report structural and electrical characterization of large-area epitaxial thin films of TDS Na3Bi on single crystal Al2O3[0001] substrates. Charge carrier mobilities exceeding 6,000 cm2/(V s) and carrier densities below 1 × 1018 cm–3 are comparable to the best single crystal values. Perpendicular magnetoresistance at low field shows the perfect weak antilocalization behavior expected for Dirac Fermions in the absence of intervalley scattering. At higher fields up to 0.5 T anomalously large quadratic magnetoresistance is observed, indicating that some aspects of the low field magnetotransport (μB < 1) in this TDS are yet to be explained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700