Detection of Adenosine Triphosphate with an Aptamer Biosensor Based on Surface-Enhanced Raman Scattering
详细信息    查看全文
文摘
A simple, ultrasensitive, highly selective, and reagent-free aptamer-based biosensor has been developed for quantitative detection of adenosine triphosphate (ATP) using surface-enhanced Raman scattering (SERS). The sensor contains a SERS probe made of gold nanostar@Raman label@SiO2 core鈥搒hell nanoparticles in which the Raman label (malachite green isothiocyanate, MGITC) molecules are sandwiched between a gold nanostar core and a thin silica shell. Such a SERS probe brings enhanced signal and low background fluorescence, shows good water-solubility and stability, and exhibits no sign of photobleaching. The aptamer labeled with the SERS probe is designed to hybridize with the cDNA on a gold film to form a rigid duplex DNA. In the presence of ATP, the interaction between ATP and the aptamer results in the dissociation of the duplex DNA structure and thereby removal of the SERS probe from the gold film, reducing the Raman signal. The response of the SERS biosensor varies linearly with the logarithmic ATP concentration up to 2.0 nM with a limit of detection of 12.4 pM. Our work has provided an effective method for detection of small molecules with SERS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700