A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from Tc = 26 to 80 K
详细信息    查看全文
文摘
The incorporation of tetraoxolene radical bridging ligands into a microporous magnetic solid is demonstrated. Metalation of the redox-active bridging ligand 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (LH2) with FeII affords the solid (Me2NH2)2[Fe2L3]·2H2O·6DMF. Analysis of X-ray diffraction, Raman spectra, and M?ssbauer spectra confirm the presence of FeIII centers with mixed-valence ligands of the form (L3)8– that result from a spontaneous electron transfer from FeII to L2–. Upon removal of DMF and H2O solvent molecules, the compound undergoes a slight structural distortion to give the desolvated phase (Me2NH2)2[Fe2L3], and a fit to N2 adsorption data of this activated compound gives a BET surface area of 885(105) m2/g. Dc magnetic susceptibility measurements reveal a spontaneous magnetization below 80 and 26 K for the solvated and the activated solids, respectively, with magnetic hysteresis up to 60 and 20 K. These results highlight the ability of redox-active tetraoxolene ligands to support the formation of a microporous magnet and provide the first example of a structurally characterized extended solid that contains tetraoxolene radical ligands.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700