A Synthetic Zipper Peptide Motif Orchestrated via Co-operative Interplay of Hydrogen Bonding, Aromatic Stacking, and Backbone Chirality
详细信息    查看全文
文摘
Here, we report on a new class of synthetic zipper peptide which assumes its three-dimensional zipper-like structure via a co-operative interplay of hydrogen bonding, aromatic stacking, and backbone chirality. Structural studies carried out in both solid- and solution-state confirmed the zipper-like structural architecture assumed by the synthetic peptide which makes use of unusually remote inter-residual hydrogen-bonding and aromatic stacking interactions to attain its shape. The effect of chirality modulation and the extent of noncovalent forces in the structure stabilization have also been comprehensively explored via single-crystal X-ray diffraction and solution-state NMR studies. The results highlight the utility of noncovalent forces in engineering complex synthetic molecules with intriguing structural architectures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700