Temperature Dependent Photoluminescence of Size-Purified Silicon Nanocrystals
详细信息    查看全文
文摘
The photoluminescence (PL) of size-purified silicon nanocrystals is measured as a function of temperature and nanoparticle size for pure nanocrystal films and polydimethylsiloxane (PDMS) nanocomposites. The temperature dependence of the bandgap is the same for both sample types, being measurably different from that of bulk silicon because of quantum confinement. Our results also suggest weaker interparticle and environmental coupling in the nanocomposites, with enhanced PL and an unexpected dependence of lifetime on size for the pure nanocrystal films at low temperatures. We interpret these results through differences in the low-temperature size dependence of the ensemble nonradiative equilibrium constants. The response of the PDMS nanocomposites provides a consistent measure of local temperature through intensity, lifetime, and wavelength in a polymer-dispersed morphology suitable for biomedical applications, and we exploit this to fabricate a small-footprint fiber-optic cryothermometer. A comparison of the two sample types offers fundamental insight into the photoluminescent behavior of silicon nanocrystal ensembles.

Keywords:

nanocrystalline silicon; polymer nanocomposites; photoluminescence

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700