Flexibility Coexists with Shape-Persistence in Cyanostar Macrocycles
详细信息    查看全文
文摘
Shape-persistent macrocycles are attractive functional targets for synthesis, molecular recognition, and hierarchical self-assembly. Such macrocycles are noncollapsible and geometrically well-defined, and they are traditionally characterized by having repeat units and low conformational flexibility. Here, we find it necessary to refine these ideas in the face of highly flexible yet shape-persistent macrocycles. A molecule is shape-persistent if it has a small change in shape when perturbed by external stimuli (e.g., heat, light, and redox chemistry). In support of this idea, we provide the first examination of the relationships between a macrocycle’s shape persistence, its conformational space, and the resulting functions. We do this with a star-shaped macrocycle called cyanostar that is flexible as well as being shape-persistent. We employed molecular dynamics (MD), density functional theory (DFT), and NMR experiments. Considering a thermal bath as a stimulus, we found a single macrocycle has 332 accessible conformers with olefins undergoing rapid interconversion by up–down and in–out motions on short time scales (0.2 ns). These many interconverting conformations classify single cyanostars as flexible. To determine and confirm that cyanostars are shape-persistent, we show that they have a high 87% shape similarity across these conformations. To further test the idea, we use the binding of diglyme to the single macrocycle as guest-induced stimulation. This guest has almost no effect on the conformational space. However, formation of a 2:1 sandwich complex involving two macrocycles enhances rigidity and dramatically shifts the conformer distribution toward perfect bowls. Overall, the present study expands the scope of shape-persistent macrocycles to include flexible macrocycles if, and only if, their conformers have similar shapes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700