Facet Recognition and Molecular Ordering of Ionic Liquids on Metal Surfaces
详细信息    查看全文
文摘
Ionic liquids are widely used as solvents and reaction media due to low volatility, stability up to high temperature, and large dipole moment. Emergent applications also aim at the anisotropic growth of metal nanostructures in ionic liquids through facet-selective interactions although the governing mechanisms remain poorly understood. We employed a combination of quantum mechanical and classical simulations to analyze the structure and energetics of the self-assembly of ionic liquids on metal surfaces from single ion pairs to multilayers, using the example of 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIM][ES]) on the crystallographic {111}, {100}, and {110} facets of gold. Adsorption is controlled by the interplay of soft epitaxy, ionic interactions, induced charges, and steric effects related to the geometry of the cation and anion. These factors lead to characteristic molecular patterns on individual surfaces. Binding energies are similar irrespective of surface coverage and only slightly increase from {111} to {100} and {110} surfaces due to stronger surface corrugation and higher induced charge. The results explain specific experimental observations and aid in understanding particle growth in ionic liquid media. A mechanistic hypothesis for the formation of anisotropic gold nanorods in the presence of silver ions is made, in which silver retards the growth along {100} and {110} facets through underpotential deposition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700