Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options
详细信息    查看全文
  • 作者:Wim Rulkens
  • 刊名:Energy & Fuels
  • 出版年:2008
  • 出版时间:January 2008
  • 年:2008
  • 卷:22
  • 期:1
  • 页码:9 - 15
  • 全文大小:82K
  • 年卷期:v.22,no.1(January 2008)
  • ISSN:1520-5029
文摘
Treatment of municipal wastewater results worldwide in the production of large amounts of sewage sludge. The major part of the dry matter content of this sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary (microbiological) sludge. The sludge also contains a substantial amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy (heat, electricity, or biofuel) is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery, co-incineration in coal-fired power plants, co-incineration in combination with organic waste focused on energy recovery, use as an energy source in the production of cement or building materials, pyrolysis, gasification, supercritical (wet) oxidation, hydrolysis at high temperature, production of hydrogen, acetone, butanol, or ethanol, and direct generation of electrical energy by means of specific micro-organisms. Incineration and co-incineration with energy recovery and use of sewage sludge in the production of Portland cement are applied on a large scale. In these processes, the toxic organics are destructed and the heavy metals are immobilized in the ash or cement. The energy efficiency of these processes strongly depends upon the dewatering and drying step. It is expected that these applications will strongly increase in the future. Supercritical wet oxidation is a promising innovative technology but is still in the development stage. With the exception of biogas production, the other biological methods to produce energy are still in the initial research phase. Production of biogas from sewage sludge is already applied worldwide on small, medium, and large scales. With this process, a substantial experience exists and it is expected that this application is getting more and more attention. Besides the increasing focus on the recovery and reuse of energy, inorganics, and phosphorous, there is also an increasing focus to solve completely the problem of the toxic organics and inorganic compounds in sludge. In the assessment and selection of options for energy recovery by means of biological methods, this aspect has to be taken into account.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700