Nanostructured Fluorite-Type Fluorides As Electrolytes for Fluoride Ion Batteries
详细信息    查看全文
文摘
Fluoride ion batteries (FIB) provide an interesting alternative to lithium ion batteries, in particular because of their larger theoretical energy densities. These batteries are based on a F anion shuttle between a metal fluoride cathode and a metal anode. One critical component is the electrolyte that should provide fast anion conduction. So far, this is only possible in solid so-called superionic conductors, at elevated temperatures. Herein, we analyze in detail the ionic conductivity in barium fluoride salts doped with lanthanum (Ba1鈥?i>xLaxF2+x). Doping by trivalent cations leads to an increase of the quantity of point defects in the BaF2 crystal. These defects participate in the ionic motion and therefore improve the ionic conductivity. We demonstrate that further improvement of the conductivity is possible by using a nanostructured material providing additional conduction paths through the grain boundaries. Using electrochemical impedance spectroscopy and AC conductivity analysis, we show that the ionic conduction in this material is controlled by the motion of vacancies through the grain boundaries. The mobility of the vacancies is influenced by the quantity of dopant but decrease for too large dopant concentrations. The optimum compositions having the highest conductivities are Ba0.6La0.4F2.4 and Ba0.7La0.3F2.3. The compound Ba0.6La0.4F2.4 was successfully used as an electrolyte in a FIB.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700