GC–MS-Based Metabolome and Metabolite Regulation in Serum-Resistant Streptococcus agalactiae
详细信息    查看全文
文摘
Streptococcus agalactiae causes severe systemic infections in human and fish. In the present study, we established a pathogen–plasma interaction model by which we explored how S. agalactiae evaded serum-mediated killing. We found that S. agalactiae grew faster in the presence of yellow grouper plasma than in the absence of the plasma, indicating S. agalactiae evolved a way of evading the fish immune system. To determine the events underlying this phenotype, we applied GC–MS-based metabolomics approaches to identify differential metabolomes between S. agalactiae cultured with and without yellow grouper plasma. Through bioinformatics analysis, decreased malic acid and increased adenosine were identified as the most crucial metabolites that distinguish the two groups. Meanwhile, they presented with decreased TCA cycle and elevated purine metabolism, respectively. Finally, exogenous malic acid and adenosine were used to reprogram the plasma-resistant metabolome, leading to elevated and decreased susceptibility to the plasma, respectively. Therefore, our findings reveal for the first time that S. agalactiae utilizes a metabolic trick to respond to plasma killing as a result of serum resistance, which may be reverted or enhanced by exogenous malic acid and adenosine, respectively, suggesting that the metabolic trick can be regulated by metabolites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700