Global Materials Structure Search with Chemically Motivated Coordinates
详细信息    查看全文
文摘
Identification of relevant reaction pathways in ever more complex composite materials and nanostructures poses a central challenge to computational materials discovery. Efficient global structure search, tailored to identify chemically relevant intermediates, could provide the necessary first-principles atomistic insight to enable a rational process design. In this work we modify a common feature of global geometry optimization schemes by employing automatically generated collective curvilinear coordinates. The similarity of these coordinates to molecular vibrations enhances the generation of chemically meaningful trial structures for covalently bound systems. In the application to hydrogenated Si clusters, we concomitantly observe a significantly increased efficiency in identifying low-energy structures and exploit it for an extensive sampling of potential products of silicon-cluster soft landing on Si(001) surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700