Remotely Controlled Diffusion from Magnetic Liposome Microgels
详细信息    查看全文
文摘
The reversible, temperature-dependent change in the permeability of a phospholipid bilayer has been used for controlling the diffusion rate of encapsulated molecular payload from liposomes. Liposomes were preloaded with a fluorescent dye and immobilized in calcium alginate hydrogel microparticles that also contained iron oxide nanoparticles. The composite microparticles were produced by a drop-on-demand inkjet method. The ability of iron oxide nanoparticles to locally dissipate heat upon exposure to a radio-frequency (RF) alternating magnetic field was used to control the local temperature and therefore diffusion from the liposomes in a contactless way using an RF coil. Several different release patterns were realized, including repeated on-demand release. The internal structure of the composite alginate鈥搇iposome鈥搈agnetite microparticles was investigated, and the influence of microparticle concentration on the heating rate was determined. In order to achieve a temperature rise required for the liposome membrane melting, the concentration of alginate beads should be at least 25% of their maximum packing density for the nanoparticle concentration and specific absorption rate used.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700