Oxygen Transport in Perovskite-Type Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics
详细信息    查看全文
文摘
Conspectus
Global advances in industrialization are precipitating increasingly rapid consumption of fossil fuel resources and heightened levels of atmospheric CO2. World sustainability requires viable sources of renewable energy and its efficient use. First-principles quantum mechanics (QM) studies can help guide developments in energy technologies by characterizing complex material properties and predicting reaction mechanisms at the atomic scale. QM can provide unbiased, qualitative guidelines for experimentally tailoring materials for energy applications.
This Account primarily reviews our recent QM studies of electrode materials for solid oxide fuel cells (SOFCs), a promising technology for clean, efficient power generation. SOFCs presently must operate at very high temperatures to allow transport of oxygen ions and electrons through solid-state electrolytes and electrodes. High temperatures, however, engender slow startup times and accelerate material degradation. SOFC technologies need cathode and anode materials that function well at lower temperatures, which have been realized with mixed ion鈥揺lectron conductor (MIEC) materials.
Unfortunately, the complexity of MIECs has inhibited the rational tailoring of improved SOFC materials. Here, we gather theoretically obtained insights into oxygen ion conductivity in two classes of perovskite-type materials for SOFC applications: the conventional La1鈥?i>xSrxMO3 family (M = Cr, Mn, Fe, Co) and the new, promising class of Sr2Fe2鈥?i>xMoxO6 materials. Using density functional theory + U (DFT+U) with U鈥?i>J values obtained from ab initio theory, we have characterized the accompanying electronic structures for the two processes that govern ionic diffusion in these materials: (i) oxygen vacancy formation and (ii) vacancy-mediated oxygen migration. We show how the corresponding macroscopic oxygen diffusion coefficient can be accurately obtained in terms of microscopic quantities calculated with first-principles QM.
We find that the oxygen vacancy formation energy is a robust descriptor for evaluating oxide ion transport properties. We also find it has a direct relationship with (i) the transition metal鈥搊xygen bond strength and (ii) the extent to which electrons left behind by the departing oxygen delocalize onto the oxygen sublattice. Design principles from our QM results may guide further development of perovskite-based MIEC materials for SOFC applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700