Enhancement of the Catalytic Activity of Fe Phthalocyanine for the Reduction of O2 Anchored to Au(111) via Conjugated Self-Assembled Monolayers of Aromatic Thiols As Compared to Cu Phthaloc
详细信息    查看全文
文摘
We have prepared self-assembled monolayers (SAMs) of 4-aminothiophenol (4-ATP) and 1-(4-mercaptophenyl)-2,6-diphenyl-4-(4-pyridyl)pyridinium tetrafluoroborate (MDPP) functionalized with iron phthalocyanine (FePc) and copper phthalocyanine (CuPc) adsorbed on gold (111) electrodes. The catalytic activity of these SAMs/MPc was examined for the reduction of O2 in aqueous solutions and compared to that of bare gold and with gold coated directly with preadsorbed MPc molecules. Scanning tunneling microscopy (STM) studies confirm the functionalization of the 4-ATP by MPc. STM images reveal that iron phthalocyanine molecules are chemically anchored to 4-aminothiophenol organic monolayers, probably having an 鈥渦mbrella鈥?type orientation with regards to the surface. The electrocatalytic studies carried out with Au/4-ATP/FePc and Au/MDPP/FePc electrodes show that the O2 reduction takes place by the transfer of 4-electron to give water in contrast to a 2-electron transfer process observed for the bare gold. The modified electrode obtained by simple adsorption of FePc directly to the Au(111) surface still promotes the 4-electron reduction process, but it shows a lower activity than the electrodes involving SAMs with FePc molecules positioned at the outmost portion of the self-assembled monolayers. The activity of the electrodes increases as follow: Au < Au/FePc < Au/4-ATP/FePc < Au/MDPP/FePc with the highest activity when FePc molecules are more separated from the Au surface. In contrast, the less active CuPc shows almost the same activity in all three configurations. Theoretical calculations suggest the importance of the back-bonding into the adduct formation, showing the relevance of the supporting gold surface on the electron-transfer process mediated by anchoring ligands.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700