A Well-Defined Isocyano Analogue of HCo(CO)4. 1: Synthesis, Decomposition, and Catalytic 1,1-Hydrogenation of Isocyanides
详细信息    查看全文
文摘
Reported here is the synthesis and characterization of the tetrakis(m-terphenyl isocyanide)cobalt hydride HCo(CNArMes2)4 (1; ArMes2 = 2,6-(2,4,6-Me3C6H2)2C6H3). Monohydride 1 serves as a well-defined isocyano analogue of the tetracarbonyl hydride HCo(CO)4. While tetrakis-phosphine analogues of HCo(CO)4 have been reported previously, these compounds have failed to exhibit a reactivity profile that can be compared and contrasted with HCo(CO)4 in a systematic fashion. Herein, HCo(CNArMes2)4 (1) is shown to be a readily accessed and reactive complex that allows for this comparison. For example, HCo(CNArMes2)4 (1) is found to decompose smoothly to the κ1-C-iminoformyl complex Co(η6-(Mes)-κ1C-C(H)NArMes2)(CNArMes2) (2). Kinetic analysis of this decomposition and that of the d1-isotopomer DCo(CNArMes2)4 (1-d1) revealed a unimolecular process characterized by a large primary kH/kD isotope effect (3.2(6)) and no dependence on the presence of free CNArMes2. These data point to rate-limiting hydride α-migration and formation of the κ1-C-iminoformyl species [Co(κ1-C-C(H)═NArMes2)(CNArMes2)3] as a critical intermediate. Indeed, ligand substitution reactions of HCo(CNArMes2)4 (1), as well as 13C-labeling experiments of the decomposition product 2, demonstrate that hydride α-migration is the dominant mechanistic feature of this system. Most notably, this behavior is in contrast with that of HCo(CO)4, for which it has been established that CO ligand dissociation is the initial mechanistic feature. Additional support for the critical role of hydride α-migration in HCo(CNArMes2)4 (1) was obtained by the development of catalytic CNArMes2 1,1-hydrogenation to form a stable and isolable methylenimine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700