Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon
详细信息    查看全文
文摘
Vacuum carbonization of organic precursors usually causes considerable structural damage and collapse of morphological features. However, for a polymer with intrinsic microporosity (PIM-EA-TB with a Brunauer鈥揈mmet鈥揟eller (BET) surface area of 1027 m2g鈥?), it is shown here that the rigidity of the molecular backbone is retained even during 500 掳C vacuum carbonization, yielding a novel type of microporous heterocarbon (either as powder or as thin film membrane) with properties between those of a conducting polymer and those of a carbon. After carbonization, the scanning electron microscopy (SEM) morphology and the small-angle X-ray scattering (SAXS) Guinier radius remain largely unchanged as does the cumulative pore volume. However, the BET surface area is decreased to 242 m2g鈥?, but microporosity is considerably increased. The new material is shown to exhibit noticeable electrochemical features including two pH-dependent capacitance domains switching from ca. 33 Fg鈥? (when oxidized) to ca. 147 Fg鈥? (when reduced), a low electron transfer reactivity toward oxygen and hydrogen peroxide, and a four-point-probe resistivity (dry) of approximately 40 M惟/square for a 1鈥? 渭m thick film.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700