Mononuclear Zeolite-Supported Iridium: Kinetic, Spectroscopic, Electron Microscopic, and Size-Selective Poisoning Evidence for an Atomically Dispersed True Catalyst at 22 掳C
详细信息    查看全文
文摘
This work addresses the question of what is the true catalyst when beginning with a site-isolated, atomically dispersed precatalyst for the prototype catalytic reaction of cyclohexene hydrogenation in the presence of cyclohexane solvent: is the atomically dispersed nature of the zeolite-supported, [Ir(C2H4)2]/zeolite Y precatalyst retained, or are possible alternatives including Ir4 subnanometer clusters or larger, Ir(0)n, nanoparticles the actual catalyst? Herein we report the (a) kinetics of the reaction; (b) physical characterizations of the used catalyst, including extended X-ray absorption fine structure spectra plus images obtained by high-angle annular dark-field scanning transmission electron microscopy, demonstrating the mononuclearity and site-isolation of the catalyst; and the (c) results of poisoning experiments, including those with the size-selective poisons P(C6H11)3 and P(OCH3)3 determining the location of the catalyst in the zeolite pores. Also reported are quantitative poisoning experiments showing that each added P(OCH3)3 molecule poisons one catalytic site, confirming the single-metal-atom nature of the catalyst and the lack of leaching of catalyst into the reactant solution. The results (i) provide strong evidence that the use of a site-isolated [Ir(C2H4)2]/zeolite Y precatalyst allows a site-isolated [Ir1]/zeolite Y hydrogenation catalyst to be retained even when in contact with solution, at least at 22 掳C; (ii) allow a comparison of the solid鈥搒olution catalyst system with the equivalent one used in the solid鈥揼as ethylene hydrogenation reaction at room temperature; and (iii) illustrate a methodology by which multiple, complementary physical methods, combined with kinetic, size-selective poisoning, and quantitative kinetic poisoning experiments, help to identify the catalyst. The results, to our knowledge, are the first identifying an atomically dispersed, supported transition-metal species as the catalyst of a reaction taking place in contact with solution.

Keywords:

catalysis; mononuclear; atomically dispersed; HAADF-STEM; EXAFS; kinetics; quantitative poisoning

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700