Elucidating the Mechanism of Zn2+ Sensing by a Bipyridine Probe Based on Two-Photon Absorption
详细信息    查看全文
文摘
In this work, we examine, by means of computational methods, the mechanism of Zn2+ sensing by a bipyridine-centered, D-π-A-π-D-type ratiometric molecular probe. According to recently published experimental data [Divya, K. P.; Sreejith, S.; Ashokkumar, P.; Yuzhan, K.; Peng, Q.; Maji, S. K.; Tong, Y.; Yu, H.; Zhao, Y.; Ramamurthy, P.; Ajayaghosh, A. A ratiometric fluorescent molecular probe with enhanced two-photon response upon Zn2+ binding for in vitro and in vivo bioimaging. Chem. Sci. 2014, 5, 3469–3474], after coordination to zinc ions the probe exhibits a large enhancement of the two-photon absorption cross section. The goal of our investigation was to elucidate the mechanism behind this phenomenon. For this purpose, linear and nonlinear optical properties of the unbound (cation-free) and bound probe were calculated, including the influence of solute–solvent interactions, implicitly using a polarizable continuum model and explicitely employing the QM/MM approach. Because the results of the calculations indicate that many conformers of the probe are energetically accessible at room temperature in solution and hence contribute to the signal, structure–property relationships were also taken into account. Results of our simulations demonstrate that the one-photon absorption bands for both the unbound and bound forms correspond to the bright π → π* transition to the first excited state, which, on the other hand, exhibits negligible two-photon activity. On the basis of the results of the quadratic response calculations, we put forward a notion that it is the second excited state that gives the strong signal in the experimental nonlinear spectrum. To explain the differences in the two-photon absorption activity for the two lowest-lying excited states and nonlinear response enhancement upon binding, we employed the generalized few-state model including the ground, first, and second excited states. The analysis of the optical channel suggests that the large two-photon response is due to the coordination-induced increase of the transition moment from the first to the second excited state.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700