CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study
详细信息    查看全文
文摘
Graphene-based materials are being hotly pursued for energy and environment applications. Inspired by the recent experimental synthesis of Fe2 dimer supported on graphene (He, Z.; He, K.; Robertson, A. W.; Kirkland, A. I.; Kim, D.; Ihm, J.; Yoon, E.; Lee, G.-D.; Warner, J. H. Nano Lett. 2014, 14, 3766鈥?772), here using large-scale screening-based density functional theory and microkinetics modeling, we have identified that some transition metal dimers (Cu2, CuMn, and CuNi), when supported on graphene with adjacent single vacancies (labeled as XY@2SV), perform better in CO2 electroreduction with reduced overpotental and enhanced current density. Specifically, Cu2@2SV is catalytically active toward CO production, similar to Au electrodes but distinct from bulk Cu; MnCu@2SV is selective toward CH4 generation, while NiCu@2SV promotes CH3OH production because of the difference in oxophilicity between incorporated Mn and Ni. The advantages of the outstanding selectivity of products, the high dispersity of spatial distribution, and the reduced overpotentials allow these new systems to be promising catalysts, which will motivate more experimental research in this direction to further explore graphene-based materials for CO2 conversion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700