Nanoscale Metal鈥揙rganic Frameworks for Biomedical Imaging and Drug Delivery
详细信息    查看全文
  • 作者:Joseph Della Rocca ; Demin Liu ; Wenbin Lin
  • 刊名:Accounts of Chemical Research
  • 出版年:2011
  • 出版时间:October 18, 2011
  • 年:2011
  • 卷:44
  • 期:10
  • 页码:957-968
  • 全文大小:1174K
  • 年卷期:v.44,no.10(October 18, 2011)
  • ISSN:1520-4898
文摘
Metal鈥搊rganic frameworks (MOFs), a class of hybrid materials formed by the self-assembly of polydentate bridging ligands and metal-connecting points, have been studied for a variety of applications. Recently, these materials have been scaled down to nanometer sizes, and this Account details the development of nanoscale metal鈥搊rganic frameworks (NMOFs) for biomedical applications. NMOFs possess several potential advantages over conventional nanomedicines such as their structural and chemical diversity, their high loading capacity, and their intrinsic biodegradability. Under relatively mild conditions, NMOFs can be obtained as either crystalline or amorphous materials. The particle composition, size, and morphology can be easily tuned to optimize the final particle properties. Researchers have employed two general strategies to deliver active agents using NMOFs: by incorporating active agents into the frameworks or by loading active agents into the pores and channels of the NMOFs. The modification of NMOF surfaces with either silica coatings or organic polymers improves NMOF stability, fine-tunes their properties, and imparts additional functionality.
Preliminary biomedical applications of NMOFs have focused on their use as delivery vehicles for imaging contrast agents and molecular therapeutics. Because NMOFs can carry large amounts of paramagnetic metal ions, they have been extensively explored as magnetic resonance imaging (MRI) contrast agents. Both Gd3+- and Mn2+-containing NMOFs have shown excellent efficacy as T1-weighted contrast agents with large per metal- and per particle-based MR relaxivities. Fe3+-containing NMOFs have demonstrated excellent T2-weighted contrast enhancement. Upon intravenous injection of iron carboxylate NMOFs in Wistar rats, researchers observed negative signal enhancement in the liver and spleen, which dissipated over time, indicating the degradation and clearance of the NMOF. Through the incorporation of luminescent or high Z element building blocks, NMOFs have also served as viable contrast agents for optical imaging or X-ray computed tomography (CT) imaging. Incorporation of membrane impermeable dyes into NMOFs allowed for their uptake by cancer cells and for their controlled release as the framework decomposed.
NMOFs have been used to deliver anticancer drugs and other chemotherapeutics. Cisplatin prodrugs were incorporated within NMOFs at exceptionally high levels, either through use of the prodrug as the building block or through attachment of the prodrug onto the framework after synthesis. These NMOFs were encapsulated within a silica shell and targeted to cancer cells. In vitro assays revealed that the targeted NMOFs possessed similar efficacy to cisplatin, while the nontargeted NMOFs were less active. Several different therapeutic molecules were loaded within porous iron-carboxylate NMOFs at unprecedented levels. The NMOF showed sustained drug release with no burst effect, and in vitro assays revealed that the nanoencapsulated drug possessed similar efficacy to the free drug. Although still at a very early stage of development, NMOFs have already shown great promise as a novel platform for nanomedicine. The compositional tunability and mild synthetic conditions used to produce NMOFs should allow for the incorporation of other imaging and therapeutic agents and their effective delivery to targeted cells in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700