Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives
详细信息    查看全文
文摘
We have studied the electronic properties and relative stability of the biphenylene sheet composed of alternating eight-, six- and four-carbon rings and its one-dimensional derivatives including ribbons and tubes of different widths and morphologies by means of density functional theory calculations. The two-dimensional sheet presents a metallic character that is also present in the planar strips with zigzag-type edges. Armchair-edged strips develop a band gap that decreases monotonically with the ribbon width. The narrowest armchair strip considered here (0.62 nm wide) presents a large band gap of 1.71 eV, while the 2.14 nm wide armchair strip exhibits a band gap of 0.08 eV. We have also found that tubes made by rolling these ribbons in a seamlessly manner are all metallic, independent of their chirality. However, while the calculated energy landscape suggests that planar strips present a relative stability comparable to that of C60, in the tubular form, they present a more pronounced metastable nature with a Gibbs free energy of at least 0.2 eV per carbon higher than in C60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700