Colossal Reduction in Curie Temperature Due to Finite-Size Effects in CoFe2O4 Nanoparticles
详细信息    查看全文
文摘
In this work, we show the enormous size effect on the ordering transition temperature, TO, in samples of CoFe2O4 nanoparticles with diameters ranging from 1 to 9 nm. Samples were characterized by HRTEM and XRD analyses and show a bimodal particle size distribution centered at 3 nm and around 6 nm for 鈥渟mall鈥?and 鈥渓arge鈥?particles, respectively. The results and concomitant interpretation were derived from studies of the magnetization dependence of the samples on temperature at low and high magnetic fields and relaxation times using both dc and ac fields. The large particles show a typical superparamagnetic behavior with blocking temperatures, TB, around 100 K and a Curie temperature, TC, above room temperature. The small particles, however, show a colossal reduction of their magnetic ordering temperature and display paramagnetic behavior down to 10 K. At lower temperatures, these small particles are blocked and show both exchange and anisotropy field values above 5 T. The order of magnitude reduction in TO demonstrates a heretofore unreported magnetic behavior for ultrasmall nanoparticles of CoFe2O4, suggesting its further study as an advanced material.

Keywords:

magnetic nanoparticles; Curie temperature

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700